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We construct a mapping between the two-dimensional toric code model in external magnetic fields, hz and
hx, and the three-dimensional classical Ising system with plaquette interactions, which is equivalent to the
three-dimensional Z2 gauge Higgs model with anisotropy between the imaginary time and spatial directions.
The isotropic limit of the latter model was studied using Monte Carlo simulations on large �up to 603� lattices
in order to determine the stability of the topological phase against generic magnetic field perturbations and to
resolve fine details of the phase diagram. We find that the topological phase is bounded by second-order
transition lines, which merge into a first-order line at what appears to be a multicritical point arising from the
competition between the Higgs and confinement transitions in the Z2 gauge system. An effective field theory
for this type of multicritical point �if one actually exists� is not known. Our results have potential applications
to frustrated magnets, quantum computation, lattice gauge models in particle physics, and critical phenomena.
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I. INTRODUCTION

Topological quantum phases with anyon excitations are
well known in connection with the fractional quantum-Hall
effect but they are also expected to exist in frustrated mag-
netic systems. It has long been proposed that a certain class
of resonating-valence-bond1 phases carries Z2 charges and
vortices, and has a fourfold degenerate ground state on a
torus.2 Qualitative understanding of this phase can be ob-
tained from the toric code model �TCM�.3 The dimer model
on the Kagome lattice is mapped onto the TCM exactly4

while some other models5,6 belong to the same universality
class.

The TCM is defined in terms of spin-1/2 degrees of free-
dom located on bonds of the two-dimensional �2D� square
lattice

HTC = − Jx�
s

As − Jz�
p

Bp, �1�

where As=� j�s� j
x and Bp=� j�p� j

z are products of spin op-
erators �� j

� are the Pauli matrices� on the bonds incident to a
site s and on the boundary of a plaquette p, respectively. The
ground state corresponds to eigenvalues As=1, Bp=1 for all s
and p. On a surface of genus g, it is 4g-fold degenerate.
Elementary excitations are characterized by eigenvalues
As=−1 �a Z2 charge on site s� and Bp=−1 �a Z2 vortex on
plaquette p�; all excitations are gapped. Each type of quasi-
particle is bosonic, but due to nontrivial mutual braiding,
they must be jointly regarded as Abelian anyons.

Hamiltonian �1� has special properties related to its exact
solvability: the two-point correlators vanish and the quasi-
particle dispersion is flat. These features do not survive a
small generic perturbation, while the topological character of
the ground state and the anyonic statistics of quasiparticles
remain robust. Yet, a sufficiently strong field can polarize the
spins, driving a transition to the topologically trivial phase.

Trebst et al.7 studied a magnetic field perturbation −hz�b�b
z

and solved the problem by reducing it to the 2D transverse-
field Ising model which was then mapped to an anisotropic
three-dimensional �3D� classical Ising system. In this work,
we consider a more general Hamiltonian

HQ = HTC − hx�
b

�b
x − hz�

b

�b
z , �2�

where b runs over the lattice bonds and HTC is given by Eq.
�1�. Note that the fields hx and hz induce different types of
phase transitions. The hz term creates virtual pairs of Z2
charges, which condense when the field strength exceeds a
certain threshold. This phenomenon may be described as a
Higgs transition, or vortex confinement. By duality, the hx
field causes condensation of vortices and charge confine-
ment. The competition of the two terms results in an inter-
esting quantum phase diagram.

We approach the problem by mapping the 2D quantum
problem in Eq. �2� onto a classical problem in one dimension
higher, see Eq. �9�. The resulting model contains four param-
eters and is classified as an anisotropic Z2 gauge Higgs
model. The universal properties of continuous transitions are
likely to be independent of the anisotropy �between the
imaginary time and spatial directions�. We perform the actual
numerics for the isotropic case, i.e., for the M3,2 model as
defined by Wegner,8 in order to reduce the number of free
parameters and to speed up the computation.

Some properties of the phase diagram of the isotropic 3D
Higgs model were predicted by Fradkin and Shenker.9 In
particular, the topological phase is bounded by second-order
lines described by charge condensation �for hx�hz�Jx ,Jz�
and vortex condensation �for hz�hx�Jx ,Jz�. While the two
transitions are distinct as approached from the topological
phase, there is no fundamental difference between the result-
ing condensates, which can be continuously transformed one
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to the other. For Hamiltonian �2�, a connecting path is real-
ized by increasing hz to polarize the spins in the z direction,
rotating the polarizing field in the xz plane, and then decreas-
ing the hx field. However, the two transition lines are not
expected to join smoothly.

The first numerical study of the isotropic Z2 gauge Higgs
model involving 103 sites by Jongeward, Stack, and
Jayaprakash10 showed that the second-order lines terminate
in the vicinity of a finite first-order transition interval that
partially separates the charge and vortex condensates. The
conjecture was that the second-order lines might become
first-order before merging. Subsequent simulations on lat-
tices with up to 303 sites by Genovese et al.11 revealed strong
finite-size effects in this region of the phase diagram and
rejected the conjecture. The actual topology of connections
between the lines remained unanswered, leaving three pos-
sible scenarios: �1� a single point where all three lines end,
�2� disconnected first-order line, and �3� termination of
second-order transitions at the first-order line, see inset in
Fig. 2.

In this work we attempted simulations of even larger sys-
tems �up to 603 sites� in order to solve the puzzle. In agree-
ment with Ref. 11, we rule out the original conjecture.10

Nevertheless, more accurate data and better resolution in the
parameter space did not allow us to differentiate conclusively
between the remaining scenarios. In the likely case of first
scenario, we argue that the point where all three lines end is
a novel type of multicritical point. Note that each of the
second-order transitions is characterized by an Ising-type or-
der parameter representing the magnitude of the correspond-
ing condensate. The two orders must somehow coexist at the
multicritical point though they are incompatible at the semi-
classical level due to the nontrivial braiding between charges
and vortices.

II. QUANTUM-TO-CLASSICAL MAPPING

Hamiltonian �2� is not gauge invariant but it can be
mapped to a Z2 gauge theory by introducing a dummy spin
variable �s �matter field� at each site. In the enlarged Hilbert
space, we only consider states ��� such that �s

x���= ���.
This constraint is a prototype of the gauge-theoretic condi-
tion stating that physical states are invariant under the opera-
tor �s

xAs, which flips the spins on site s and all incident
bonds. To turn one constraint into the other, we apply the
transformation

�uv
z → �u

z�uv
z �v

z �uv
x → �uv

x

�s
z → �s

z �s
x → �s

xAs,
�3�

where �uv describes spins on the bond b connecting sites u
and v. The transformed Hamiltonian has this form

H = − Jx�
s

�s
x − Jz�

p

Bp − hx�
b

�b
x − hz�

uv
�u

z�uv
z �v

z . �4�

Note that in the first term, we have replaced As by �s using
the condition that �s

x���=As��� for all physical states ���.
We now map this 2D quantum Hamiltonian onto a

�2+1�-dimensional classical model. The overall approach is

standard12 and based on imaginary time evolution, with spe-
cial care taken to preserve the gauge invariance. We divide
the imaginary time interval �0,�	 into a large number of
smaller intervals, �	=� /n, and use the Trotter formula to
express the quantum partition function Z=Tr�exp�−�H�P	,
where P is the projector onto the gauge-invariant subspace.
Namely, we approximate the operator exp�−�H� by
�exp�−�	Hx�exp�−�	Hz�	n, where Hx and Hz are the terms
in the quantum Hamiltonian that depend on �b

x, �s
x and �b

z ,
�s

z, respectively. The operator exp�−�	Hx�exp�−�	Hz� rep-
resents a transition between two adjacent time slices, say, j
and j+1, and all matrix elements may be expressed in the
standard basis, where �b

z and �s
z are diagonal. This allows us

to interpret the trace as the partition function of a classical
system defined in terms of Ising variables �b,j, �s,j = 
1 re-
siding on the horizontal bonds and the sites of a space-time
cubic lattice. More specifically, the operator exp�−�	Hz� de-
termines the statistical weight of spin configurations on each
time slice, whereas exp�−�	Hx� connects adjacent slices.
The effect of the transverse field on a single spin is given by
the matrix element


�b,j+1
z �ehx�	�b

x
��b,j

z � = �1

2
sinh�2h̃x��1/2

e�x�b,j+1
z �b,j

z
,

where h̃x=hx�	 and �x=−�1 /2�ln tanh�h̃x�. A similar trans-
formation applied to the −Jx�s

x term introduces a coupling

constant �x=−�1 /2�ln tanh�J̃x� with J̃x=Jx�	 between matter
fields on the two time slices. Thus, the discrete imaginary
time evolution corresponds to the following classical Hamil-
tonian:

HC = − �x�
u,j

�u,j�u,j+1 − J̃z�
p,j

Bp,j − �x�
uv,j

�uv,j�uv,j+1

− h̃z�
uv

�u,j�uv,j�v,j , �5�

where J̃z=Jz�	 and h̃z=hz�	.
Equation �5�, however, lacks symmetry between space

and time directions since vertical bonds �between sites �u , j�
and �u , j+1�	 do not carry any spins. In addition, we need to
insert the gauge projector P. To address both issues, we write
the partition function as �exp�−�	Hx�P exp�−�	Hz�	n �note
that P commutes with both Hx and Hz� and introduce sum-
mation over auxiliary spin variables �u,j+1/2 on vertical bonds
�see Fig. 1�, which represent the choice of a term in the
expansion of P=�u� 1

2 �1+�u
xAu�	. Up to the constant factor

�1 /2�k, the replacement of exp�−�	Hx� with exp�−�	Hx�P is

σuv,j+1

σuv,j

σv,j+1/2σu,j+1/2

µv,j+1

µv,jµu,j

µu,j+1

FIG. 1. Physical spins �uv,j and auxiliary spins �u,j, �u,j+1/2 on
the 3D simple cubic lattice.
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equivalent to the following substitution in Eq. �5�:

�u,j�u,j+1 → �u,j�u,j+1�u,j+1/2,

�uv,j�uv,j+1 → �uv,j�uv,j+1�u,j+1/2�uv,j+1/2. �6�

Thus we arrive at the following classical Hamiltonian:

HC = − �
uv


bond

,� �u�uv�v − �

p

pl


,��
j�p

� j , �7�


bond

 = −

1

2
ln tanh J̃x − vertical bonds, �8a�


bond
� = h̃z − horizontal bonds, �8b�


pl

 = −

1

2
ln tanh h̃x − vertical plaquettes, �8c�


pl
� = J̃z − horizontal plaquettes. �8d�

This model is an anisotropic generalization of the Z2 gauge
Higgs model.9

As a final step, we eliminate the redundancy by fixing
�u,j. This only changes the classical partition function by a
constant factor since Hamiltonian �7� can be written in terms
of the gauge-invariant variables Suv=�u�uv�v

H̃C = − �
b


bond

,� Sb − �

p

pl


,��
j�p

Sj . �9�

Taking all constant factors in the above transformations into
account, we find the exact relation between �the discrete ver-
sions of� the quantum and classical partition functions

Z = �1

2
sinh�2J̃x��k/2�1

2
sinh�2h̃x��m/2

Z̃C, �10�

where k and m are the numbers of vertical bonds and vertical
plaquettes, respectively.

Model �9� can be considered as an anisotropic generaliza-
tion of the Z2 gauge Higgs system9 and contains four free
parameters. Although the derivation was done in the limit of
small �	, we believe that the qualitative phase diagram and
the nature of critical points are universal. In what follows we
consider the isotropic version of the model

H̃C = − 
bond�
b

Sb − 
pl�
p

�
j�p

Sj , �11�

where 
bond= h̃z=− 1
2 ln tanh J̃x and 
pl= J̃z=− 1

2 ln tanh h̃x.

III. PHASE DIAGRAM IN THE ISOTROPIC CASE

At 
bond=0 all configurations, including ground states,
have the same degeneracy factor 22N. The actual physical
variables in this limit are plaquette numbers Np=� j�pSj, and
the model itself is dual to the 3D classical Ising model �Eq.
�11� is also known as the 3D Ising gauge theory8	. Using
high-accuracy results of Ref. 13 for the critical point and the

duality relation 
pl=−1 /2 ln tanh�J /T�, where J is the Ising
exchange coupling, we obtain 
pl

�c�=0.7614125.
At arbitrary values of 
bond and 
pl the model is

self-dual,14 i.e., it maps to itself under the coupling
constant transformation 
bond,pl→−1 /2 ln tanh�
pl,bond�.
This means that the phase diagram has a symmetry across
the self-duality line defined by 
bond=−1 /2 ln tanh�
pl�.
Under the duality mapping �
bond=0 , 
pl=0.7614125�
→ �
bond=0.221655, 
pl=��, which gives us two Ising-type
critical points on the phase diagram.

To calculate the rest of the phase diagram we performed
Monte Carlo �MC� simulations using standard single-spin
flip updates, supplemented by rare �once per N2 updates�
flips of all spins belonging to bonds cut by planes oriented
along any one of the crystal axes or along any of the diago-
nals to these axes. There are 9N possible planes satisfying
this condition, and we select any of them at random. The
plaquette energy �second term in Eq. �11�	 is conserved by
this update. To determine the second-order critical lines, we
employed the standard finite-size scaling analysis of the spe-
cific heat Cv, for linear system sizes N=24, 36, 48, and 60
�i.e., for 3N3 spins�. First-order critical points were identified
and located using energy distributions. These distributions
are bimodal �have two maxima� at the first-order transition
and single-modal otherwise. We anneal our samples before
collecting statistics for up to 106 MC sweeps �one sweep
having 3N3 elementary updates�. The data were accumulated
for �4�108 MC sweeps.

The resulting phase diagram is presented in Fig. 2. The
first-order transition coinciding with the self-duality line was
observed for 0.2575�5��
bond�0.22635�5�. Outside of this
interval we did not detect any bimodal structure in the energy
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FIG. 2. �Color online� The phase diagram of Hamiltonian �11�.
Circles correspond to second-order transitions �open and filled sym-
bols are related by the duality transformation�. Filled squares mark
a first-order transition on the self-duality line. The phases are: �I�—
topological phase; �II�—disordered phase; and �III�—magnetically
ordered phase. In inset �a� we show the region where all phases
meet each other. In inset �b� we show three alternative ways of
connecting the lines; bold and dashed lines correspond to the first-
and second-order transitions, respectively.
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distribution for system sizes up to N=60. The inset of Fig. 3
shows the evolution of the energy distribution function along
the self-dual line. Even when the bimodal structure is ob-
served, it is extremely weak, developing only for large N.
Under these conditions, the distribution can be sampled
across the minimum without the flat-histogram or similar
reweighing techniques.

As noted above, these results disagree with conclusions of
Ref. 10 that the first-order line splits into two first-order tran-
sitions. The inset �a� in Fig. 2 shows a closeup of the con-
troversial region. Though we were able to resolve transition
points with accuracy of at least three digits, we observed no
evidence for splitting of the self-dual first-order line into two
first-order transitions. We also find no evidence for tricritical
points on the Ising-type lines as long as we can resolve two
separate transitions. There remains a tiny parameter range
between the apparent disappearance of the bimodal distribu-
tion on the self-dual line �this disappearance is likely due to
limited system sizes� and two resolved second-order transi-
tions.

To probe the behavior in this tiny parameter range one has
to use a different strategy. We scanned the energy distribu-
tions �for N=48� at 30 points along the line perpendicular to
the self-duality line right in the questionable region �short
solid line in the inset �a�	. If the first-order line were to split
above the scan, the third maximum would have to emerge in
the energy distribution in between the two maxima we ob-
serve on the self-dual line—implying that the energy maxima
on the self-dual line could not merge smoothly, and, right
below the split, three maxima would have to be seen in the
energy distribution. However all distributions along the scan
were found to have only one peak. It is also clear from the
main plot in Fig. 3 that on the self-dual line the energy
maxima approach each other and merge continuously as

bond decreases. The curves presented in Fig. 3 follow a
power law near the vanishing point, with the corresponding
critical exponent �0.55.

We thus conclude, in agreement with Ref. 11, that the
first-order line does not split into two first-order transitions.
Instead, there are three other possibilities. Either all three
lines merge at one point �case �1� in the inset �b�, Fig. 2	; or
the first-order line ends before or after the point where two
second-order lines touch the self-dual line �cases �2� and �3�
in the inset �b�, Fig. 2	. Unfortunately, our data cannot dis-
tinguish between the alternatives because the second-order
lines seem to touch at extremely small �possibly zero� angle.
Theoretically, the last scenario is the least demanding since it
fits the existing theory of phase transitions. Speaking of the
second case, our data indicate that the second-order lines do
not join smoothly but rather form a cusp at the self-duality
line. We are not aware of any effective field theory that
would explain this or the first �the most likely� scenario.

IV. PHASES

Using the correspondence equations

h̃z = −
1

2
ln tanh�Jx�	� = 
bond, �12a�

J̃z = −
1

2
ln tanh�hx�	� = 
pl �12b�

we can reformulate the phase diagram in Fig. 2 in terms of

renormalized parameters J̃x=Jx�	, J̃z, h̃x=hx�	, and h̃z of the

TCM. The resulting phase diagram in the �h̃z , h̃x� plane is
presented in Fig. 4. Phase �I� corresponds to the topological
phase of model �2� �the “free charge” phase of the isotropic
Z2 Higgs model �HM� �Ref. 9�	. In this phase, the system
tends to have all Bp=1 and As=1 and a realization of such a
state is obviously not unique. The plaquettes with Bp=−1
�magnetic vortices� and vertices with As=−1 �electric
charges� appear mainly in the vicinity of the critical lines
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FIG. 3. �Color online� Energy splitting between two maxima in
the bimodal energy distributions along the self-duality line for
N=48 and N=60 as a function of 
bond. The inset shows examples
of energy distributions at various values of 
bond.
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FIG. 4. �Color online� The phase diagram of Fig. 2 in terms of

the renormalized external fields, h̃x=hx�	 and h̃z=hz�	 of Hamil-
tonian �2�. The phases �i�, �II�, and �II� are the same as in Fig. 2.
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between the phases. The state �III� may be called “magneti-

cally ordered” in the limit h̃x→0 when spins are mostly po-
larized in the z direction. Since 
�z� has nonzero value ev-
erywhere in the phase diagram, the true order parameter may
be written as 
�z� using the gauge-symmetrized Hamiltonian
�4�. A nonzero value of this parameter results in the confine-
ment of magnetic vortices �no free vortices� and the conden-
sation of electric charges. In the HM this is the “Higgs”

phase. The state �II� in the limit h̃z→0 is characterized by an
order parameter dual 
�x�, which can be defined by rewriting
the Hamiltonian in different variables. Its nonzero value re-
sults in nonconservation of the total magnetic “charge” and
condensation of magnetic vortices while electric charges are
confined �no free charges�. This state corresponds to the
“confinement” phase of the HM. While there is no funda-
mental distinction between �II� and �III� when both external
fields are nonzero, there is a possibility of having a first-
order transition within the phase. In our case, the first-order
transition is accompanied by an abrupt change in the number
of vortices and charges, similar to the density discontinuity
in the liquid-gas transition. The self-duality reflects the sym-
metry between charges and vortices.

V. SUMMARY

We examined the stability of the two-dimensional toric
code model �a prototype system for topological quantum
computation� against generic magnetic field perturbations.
We mapped the TCM onto a 3D classical Ising-type model
with four parameters. In the space-time symmetric case, we
arrive at the Z2 gauge Higgs model on a simple cubic lattice

and compute its phase diagram by employing large scale
Monte Carlo simulations. The topological phase of the TCM
�the free charge phase of the Z2 gauge Higgs model� remains
stable in a wide range of field parameters and breaks down
via two Ising-type transitions whose critical lines meet at �or
in close vicinity of� the tip of a first-order line within the
nontopological phase. An effective field theory describing
the joining of these three lines remains an interesting open
problem.

Recently, the effect of magnetic fields on TCM was stud-
ied perturbatively and by exact diagonalization for parallel15

and perpendicular16 fields by Vidal et al. The phase diagram,
obtained in these works is qualitatively the same as ours
including the apparent multicritical point. Phase diagrams of
related models with both electric and magnetic confinements
were studied in the past using various Monte Carlo tech-
niques on smaller 3D lattices by Sedgevick et al.17 and Park
and Sachdev.18 Despite an additional global U�1� symmetry
present in their systems, the topology of phase diagrams is
similar to that obtained here.

ACKNOWLEDGMENTS

We thank E. Fradkin, B. Svistunov, S. Trebst, M. Troyer,
I. Affleck, K. Shtengel, and S. Sachdev for discussions. We
are also indebted to M. Berciu and J. Heyl whose research
clusters were used to perform our MC simulations. N.P. ac-
knowledges support from the National Science Foundation
under Grant No. PHY-0653183, a grant from the Army Re-
search Office with funding from the DARPA OLE program,
and Aspen Center for physics.

1 P. W. Anderson, Science 235, 1196 �1987�.
2 N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 �1989�.
3 A. Yu. Kitaev, Ann. Phys. �N.Y.� 303, 2 �2003�.
4 G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89,

137202 �2002�.
5 N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 �1991�.
6 R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 �2001�.
7 S. Trebst, P. Werner, M. Troyer, K. Shtengel, and Ch. Nayak,

Phys. Rev. Lett. 98, 070602 �2007�.
8 F. J. Wegner, J. Math. Phys. 12, 2259 �1971�.
9 E. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682 �1979�.

10 G. A. Jongeward, J. D. Stack, and C. Jayaprakash, Phys. Rev. D
21, 3360 �1980�.

11 L. Genovese, F. Gliozzi, A. Rago, and C. Torrero, Nucl. Phys. B,

Proc. Suppl. 119, 894 �2003�.
12 M. Suzuki, Prog. Theor. Phys. 56, 1454 �1976�.
13 R. Gupta and P. Tamayo, US-Japan Bilateral Seminar—Maui,

August 28–31, 1996.
14 R. Balian, J. M. Drouffe, and C. Itzykson, Phys. Rev. D 11, 2098

�1975�.
15 J. Vidal, S. Dusuel, and K. P. Schmidt, Phys. Rev. B 79, 033109

�2009�.
16 J. Vidal, R. Thomale, K. P. Schmidt, and S. Dusuel, Phys. Rev. B

80, 081104 �2009�.
17 R. D. Sedgewick, D. J. Scalapino, and R. L. Sugar, Phys. Rev. B

65, 054508 �2002�.
18 K. Park and S. Sachdev, Phys. Rev. B 65, 220405 �2002�.

TOPOLOGICAL MULTICRITICAL POINT IN THE PHASE… PHYSICAL REVIEW B 82, 085114 �2010�

085114-5

http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1103/PhysRevB.40.7133
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevLett.98.070602
http://dx.doi.org/10.1063/1.1665530
http://dx.doi.org/10.1103/PhysRevD.19.3682
http://dx.doi.org/10.1103/PhysRevD.21.3360
http://dx.doi.org/10.1103/PhysRevD.21.3360
http://dx.doi.org/10.1016/S0920-5632(03)01713-4
http://dx.doi.org/10.1016/S0920-5632(03)01713-4
http://dx.doi.org/10.1143/PTP.56.1454
http://dx.doi.org/10.1103/PhysRevD.11.2098
http://dx.doi.org/10.1103/PhysRevD.11.2098
http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.80.081104
http://dx.doi.org/10.1103/PhysRevB.80.081104
http://dx.doi.org/10.1103/PhysRevB.65.054508
http://dx.doi.org/10.1103/PhysRevB.65.054508
http://dx.doi.org/10.1103/PhysRevB.65.220405

